首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7308篇
  免费   749篇
  2021年   127篇
  2020年   71篇
  2019年   99篇
  2018年   96篇
  2017年   87篇
  2016年   158篇
  2015年   237篇
  2014年   268篇
  2013年   325篇
  2012年   434篇
  2011年   410篇
  2010年   257篇
  2009年   222篇
  2008年   331篇
  2007年   322篇
  2006年   339篇
  2005年   281篇
  2004年   319篇
  2003年   281篇
  2002年   289篇
  2001年   176篇
  2000年   177篇
  1999年   149篇
  1998年   87篇
  1997年   78篇
  1996年   84篇
  1995年   62篇
  1994年   63篇
  1993年   71篇
  1992年   99篇
  1991年   110篇
  1990年   111篇
  1989年   80篇
  1988年   93篇
  1987年   90篇
  1986年   94篇
  1985年   88篇
  1984年   63篇
  1983年   56篇
  1982年   66篇
  1981年   67篇
  1980年   49篇
  1979年   64篇
  1978年   71篇
  1977年   53篇
  1976年   42篇
  1975年   48篇
  1973年   57篇
  1972年   40篇
  1971年   41篇
排序方式: 共有8057条查询结果,搜索用时 15 毫秒
991.
Caseicins A and B are low-molecular-weight antimicrobial peptides which are released by proteolytic digestion of sodium caseinate. Caseicin A (IKHQGLPQE) is a nine-amino-acid cationic peptide, and caseicin B (VLNENLLR) is a neutral eight-amino-acid peptide; both have previously been shown to exhibit antibacterial activity against a number of pathogens, including Cronobacter sakazakii. Previously, four variants of each caseicin which differed subtly from their natural counterparts were generated by peptide synthesis. Antimicrobial activity assays revealed that the importance of a number of the residues within the peptides was dependent on the strain being targeted. In this study, this engineering-based approach was expanded through the creation of a larger collection of 26 peptides which are altered in a variety of ways. The investigation highlights the generally greater tolerance of caseicin B to change, the fact that changes have a more detrimental impact on anti-Gram-negative activity, and the surprising number of variants which exhibit enhanced activity against Staphylococcus aureus.  相似文献   
992.
Phagocyte NADPH oxidases generate superoxide at high rates in defense against infectious agents, a process regulated by second messenger anionic lipids using incompletely understood mechanisms. We reconstituted the catalytic core of the human neutrophil NADPH oxidase, flavocytochrome b (Cyt b) in 99% phosphatidylcholine vesicles in order to correlate anionic lipid-dependent conformational changes in membrane-bound Cyt b and oxidase activity. The anionic lipid 10:0 phosphatidic acid (10:0 PA) specifically induced conformational changes in Cyt b as measured by a combination of fluorescence resonance energy transfer methods and size exclusion chromatography. The fluorescence lifetime of a complex between Cyt b and Cascade Blue-derivatized anti-p22(phox) antibody (CCB-CS9), increased after exposure to 10:PA by ~50% of the change observed when the complex is dissociated, indicating a structural rearrangement of p22(phox) and/or the Cyt b heme prosthetic groups. Half of the quenching relaxation occurred at 10:0 PA concentrations permissive to less than 10% full NADPH oxidase activity, but saturated near the saturation in activity in a matched cell-free oxidase assay. We conclude that anionic lipids modulate the conformation of Cyt b in the membrane and suggest they may serve to modulate the structure of Cyt b as a control mechanism for the NADPH oxidase.  相似文献   
993.
Huntington disease (HD) is an inherited neurodegenerative disorder caused by an abnormal polyglutamine expansion in the protein Huntingtin (Htt). Currently, no cure is available for HD. The mechanisms by which mutant Htt causes neuronal dysfunction and degeneration remain to be fully elucidated. Nevertheless, mitochondrial dysfunction has been suggested as a key event mediating mutant Htt-induced neurotoxicity because neurons are energy-demanding and particularly susceptible to energy deficits and oxidative stress. SIRT3, a member of sirtuin family, is localized to mitochondria and has been implicated in energy metabolism. Notably, we found that cells expressing mutant Htt displayed reduced SIRT3 levels. trans-(-)-ε-Viniferin (viniferin), a natural product among our 22 collected naturally occurring and semisynthetic stilbenic compounds, significantly attenuated mutant Htt-induced depletion of SIRT3 and protected cells from mutant Htt. We demonstrate that viniferin decreases levels of reactive oxygen species and prevents loss of mitochondrial membrane potential in cells expressing mutant Htt. Expression of mutant Htt results in decreased deacetylase activity of SIRT3 and further leads to reduction in cellular NAD(+) levels and mitochondrial biogenesis in cells. Viniferin activates AMP-activated kinase and enhances mitochondrial biogenesis. Knockdown of SIRT3 significantly inhibited viniferin-mediated AMP-activated kinase activation and diminished the neuroprotective effects of viniferin, suggesting that SIRT3 mediates the neuroprotection of viniferin. In conclusion, we establish a novel role for mitochondrial SIRT3 in HD pathogenesis and discovered a natural product that has potent neuroprotection in HD models. Our results suggest that increasing mitochondrial SIRT3 might be considered as a new therapeutic approach to counteract HD, as well as other neurodegenerative diseases with similar mechanisms.  相似文献   
994.
Intrauterine growth restriction (IUGR), in both animals and humans, has been linked to metabolic syndrome later in life. There has been recent evidence that perturbations in sulfur amino acid metabolism may be involved in this early programming phenomenon. Methionine is the precursor for cellular methylation reactions and for the synthesis of cysteine. It has been suggested that the mechanism behind the "fetal origins" of adult diseases may be epigenetic, involving DNA methylation. Because we have recently demonstrated the fetal origins phenomenon in Yucatan miniature swine, we hypothesized that sulfur amino acid metabolism is altered in IUGR piglets. In this study, metabolites and the activities of sulfur amino acid cycle enzymes were analyzed in liver samples of 3- to 5-day-old runt (IUGR: 0.85±0.13 kg) and large (1.36±0.21 kg) Yucatan miniature pig littermates (n=6 pairs). The IUGR piglets had significantly lower specific and total activities of betaine-homocysteine methyltransferase (BHMT) and cystathionine γ-lyase (CGL) than larger littermates (P<.05). Expression of CGL (but not BHMT) mRNA was also lower in IUGR piglets (P<.05). This low CGL reduced cysteine and taurine concentrations in IUGR pigs and led to an accumulation of hepatic cystathionine, with lower homocysteine concentrations. Methylation index and liver global DNA methylation were unaltered. Reduced prenatal growth in Yucatan miniature piglets impairs their remethylation capacity as well as their ability to remove cystathionine and synthesize cysteine and taurine, which could have important implications on long-term health outcomes of IUGR neonates.  相似文献   
995.
Consumers are usually thought of as negatively affecting producers, but they can affect them positively by releasing nutrients (nutrient regeneration). The net effects of consumers on producers should depend on the balance between the effects of consumption and nutrient regeneration. In aquatic habitats, nutrient regeneration by consumers may increase microbial activity on leaf detritus as well as algal production, which in turn may stimulate further nutrient release and benefit herbivores or detritivores by increasing food quantity or quality. Omnivores can regenerate nutrients from animals, algae and detritus, creating diverse nutrient pathways. Many tadpoles are omnivores, and their nutrient regeneration may be important in aquatic food webs. To reveal the nutrient pathways created by tadpoles and examine whether omnivorous tadpoles can have positive effects on producers and consumers, we experimentally examined the effects of nutrient regeneration by three densities of tadpoles on primary producers, leaf litter, and other consumers in tank mesocosms. Tadpole exclosures were placed inside each mesocosm, allowing us to separate direct consumption effects from indirect nutrient regeneration effects. Nutrient regeneration caused by the herbivorous and carnivorous feeding activities of tadpoles positively affected rates of production of benthic algae, phytoplankton, and herbivorous benthic chironomid larvae, and rates of mineralization of leaf litter. The increased production of benthic algae and chironomid larvae was consumed by the tadpoles themselves, leaving no net change in the standing biomass of these resources. Our experiment thus demonstrated that omnivores created complicated nutrient pathways and accelerated rates of primary production and growth rates of other consumers, leading to increased rates of food availability to the omnivores themselves. Interactions of this nature may be common in many systems and could strongly moderate the effects of consumers on their resources and each other.  相似文献   
996.

Aim

To test if there is an interactive effect between tree and understory species on the soil microbial community (SMC), community level physiological profiles (CLPP) and soil micro-fauna.

Method

A replicate pot experiment with five sapling tree species (Betula pendula, Betula pubescens, Sorbus aucuparia, Quercus petraea and Pinus sylvestris) and a no-tree treatment with and without Calluna vulgaris was established. After 21?months samples were taken for phospholipid fatty acid (PLFA) analysis, CLPP and soil microfauna assessment.

Results

There was an interactive effect of tree species and Calluna on the SMC, CLPP and nematode densities. Calluna addition changed the SMC composition (increase in fungal PLFAs) and the CLPP (lower utilisation of most carbon sources but greater utilisation of phenolic acids). A multivariate test for homogeneity of dispersion showed that while Calluna addition resulted in the presence of an altered microbial composition, it did not result in there being less variability among the samples with Calluna than among the samples without Calluna. Sapling trees with Calluna present grew less well than trees without Calluna. Structural equation modelling showed that it is possible that Calluna had an indirect effect on the SMC via below-ground tree biomass as well as a direct effect.

Conclusion

Interactions between trees and understory vegetation can impact on the composition of soil biota and their activity.  相似文献   
997.
The Pantepui region of South America, located in southern Venezuela, northern Brazil, and western Guyana, is characterized by table mountains (tepuis) made of Proterozoic (> 1.5 billion years old) sandstone - the highest reaching nearly 3 km - that are isolated from their surroundings by up to 1000 m high vertical cliffs (Figure 1A). Tepuis are among the most inaccessible places on earth (Supplemental information), and the majority of their summits have been visited less than the moon. Due to its age and topography [1,2], this region has been assumed to be an ideal nursery of speciation and a potential inland counterpart to oceanic islands [3,4]. High endemism has been reported for the flora (25% in vascular plants) and fauna (68.5% in amphibians and reptiles) of single tepuis [5,6], and an ancient origin has been postulated for some of these organisms. But, it has also been suggested that a few taxa living in habitats extending from lowlands to summits (e.g., savannah) invaded some of the more accessible tepuis only recently [6-8]. Taken at face value, the overall timing and extent of biotic interchange between tepui summits has remained unstudied. Here, we show that recent faunal interchange among currently isolated tepui summits has been extensive, and affected even taxa living in some of the most tepui-specific habitats and on the most inaccessible summits.  相似文献   
998.
Simplified proteomics approach to discover protein-ligand interactions   总被引:1,自引:0,他引:1  
Identifying targets of biologically active small molecules is an essential but still challenging task in drug research and chemical genetics. Energetics-based target identification is an approach that utilizes the change in the conformational stabilities of proteins upon ligand binding in order to identify target proteins. Different from traditional affinity-based capture approaches, energetics-based methods do not require any labeling or immobilization of the test molecule. Here, we report a surprisingly simple version of energetics-based target identification, which only requires ion exchange chromatography, SDS PAGE, and minimal use of mass spectrometry. The complexity of a proteome is reduced through fractionation by ion exchange chromatography. Urea-induced unfolding of proteins in each fraction is then monitored by the significant increase in proteolytic susceptibility upon unfolding in the presence and the absence of a ligand. Proteins showing a different degree of unfolding with the ligand are identified by SDS PAGE followed by mass spectrometry. Using this approach, we identified ATP-binding proteins in the Escherichia coli proteome. In addition to known ATP-binding proteins, we also identified a number of proteins that were not previously known to interact with ATP. To validate one such finding, we cloned and purified phosphoglyceromutase, which was not previously known to bind ATP, and confirmed that ATP indeed stabilizes this protein. The combination of fractionation and pulse proteolysis offers an opportunity to investigate protein-drug or protein-metabolite interactions on a proteomic scale with minimal instrumentation and without modification of a molecule of interest.  相似文献   
999.
The structure and function of the PTEN phosphatase is investigated by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act pronouncedly synergistic in pulling the enzyme to the membrane surface. The equilibrium dissociation constants for the binding of wild type (wt) PTEN to PS and PI(4,5)P2 were determined to be Kd∼12 µM and 0.4 µM, respectively, and Kd∼50 nM if both lipids are present. Membrane affinities depend critically on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. The PTEN mutations C124S and H93R show binding affinities that deviate strongly from those measured for the wt protein. Both mutants bind PS more strongly than wt PTEN. While C124S PTEN has at least the same affinity to PI(4,5)P2 and an increased apparent affinity to PI(3,4,5)P3, due to its lack of catalytic activity, H93R PTEN shows a decreased affinity to PI(4,5)P2 and no synergy in its binding with PS and PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase “scoots" along the membrane surface (penetration <5 Å) but binds the membrane tightly with its two major domains, the C2 and phosphatase domains, as suggested by the crystal structure. The regulatory C-terminal tail is most likely displaced from the membrane and organized on the far side of the protein, ∼60 Å away from the bilayer surface, in a rather compact structure. The combination of binding studies and neutron reflection allows us to distinguish between PTEN mutant proteins and ultimately may identify the structural features required for membrane binding and activation of PTEN.  相似文献   
1000.
For decades researchers have used mirrors to study self-recognition. However, attempts to identify neural processes underlying this ability have used photographs instead. Here we used event related potentials (ERPs) to compare self-face recognition in photographs versus mirrors and found distinct neural signatures. Measures of visual self-recognition are therefore not independent of the medium employed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号